
Difference between nullable, __nullable and _Nullable in Objective-C
Asked 6 years, 7 months ago Modified 1 year, 7 months ago 45k timesViewed

167

90

With Xcode 6.3 there were new annotations introduced for better expressing the intention of API's in

 (and to ensure better Swift support of course). Those annotations were of course
, and .

Objective-C
nonnull nullable null_unspecified

But with Xcode 7, there is a lot of warnings appearing such as:

Pointer is missing a nullability type specifier (_Nonnull, _Nullable or _Null_unspecified).

In addition to that, Apple uses another type of nullability specifiers, marking their C code ():source

CFArrayRef __nonnull CFArrayCreate( CFAllocatorRef __nullable allocator, const void * __nonnull *

__nullable values, CFIndex numValues, const CFArrayCallBacks * __nullable callBacks);

So, to sum up, we now have these 3 different nullability annotations:

, , nonnull nullable null_unspecified

, , _Nonnull _Nullable _Null_unspecified

, , __nonnull __nullable __null_unspecified

Even though I know why and where to use which annotation, I'm getting slightly confused by which

type of annotations should I use, where and why. This is what I could gather:

For properties I should use , , .nonnull nullable null_unspecified

For method parameters I should use , , .nonnull nullable null_unspecified

For C methods I should use , , .__nonnull __nullable __null_unspecified

For other cases, such as double pointers I should use , , ._Nonnull _Nullable _Null_unspecified

But I'm still confused as to why we have so many annotations that basically do the same thing.

So my question is:

What is exact difference between those annotations, how to correctly place them and why?

objective-c nullable objective-c-nullability

Share Edit Follow edited Sep 12, 2017 at 15:18

Cœur
34.4k 23 184 249

asked Sep 8, 2015 at 8:29

Legoless
10.7k 7 45 67

3 I've read that post, but it does not explain the difference and why we have 3 different types of annotations now
and I really want to understand why they went on adding the third type. – Legoless Sep 8, 2015 at 8:34

2 This really does not help @Cy-4AH and you know it. :) – Legoless Sep 8, 2015 at 9:00

@Legoless, are you sure you read it carefully? it explains precisely where and how you should use them, what

https://stackoverflow.com/questions/32452889/difference-between-nullable-nullable-and-nullable-in-objective-c
https://stackoverflow.com/questions/32452889/difference-between-nullable-nullable-and-nullable-in-objective-c?lastactivity
https://stackoverflow.com/posts/32452889/timeline
https://developer.apple.com/videos/wwdc/2015/?id=401
https://stackoverflow.com/questions/tagged/objective-c
https://stackoverflow.com/questions/tagged/nullable
https://stackoverflow.com/questions/tagged/objective-c-nullability
https://stackoverflow.com/q/32452889/16114650
https://stackoverflow.com/posts/32452889/edit
https://stackoverflow.com/posts/32452889/revisions
https://stackoverflow.com/users/1033581/c%c5%93ur
https://stackoverflow.com/users/573186/legoless
https://stackoverflow.com/users/573186/legoless
https://stackoverflow.com/users/573186/legoless

are the audited scopes, when you can use the other one for better readability, compatibility reasons, etc, etc...
you might not know what you really like to ask, but the answer is clearly under the link. it is maybe just me, but
I don't feel that any further explanation would be necessary for explaining their purpose, copying and pasting
that simple explanation to here as an answer here would be really awkward, I guess. :(– holex Sep 8, 2015 at
9:23

2 It does clear up certain parts, but no, I still don't understand why we don't just have the first annotations. It
only explains why they went from __nullable to _Nullable, but not why do we even need _Nullable, if we have
nullable. And it also does not explain why Apple still uses __nullable in their own code. – Legoless Sep 8,

2015 at 9:46

4 Answers
Sorted by:

Highest score (default)

Help us improve our answers.

Are the answers below sorted in a way that puts the best answer at or near the top?

Take a short survey I’m not interested

173

From the :clang documentation

The nullability (type) qualifiers express whether a value of a given pointer type can be null (the
 qualifier), doesn’t have a defined meaning for null (the qualifier), or for

which the purpose of null is unclear (the qualifier). Because nullability
qualifiers are expressed within the type system, they are more general than the and

 attributes, allowing one to express (for example) a nullable pointer to an
array of nonnull pointers. Nullability qualifiers are written to the right of the pointer to which

they apply.

_Nullable _Nonnull

_Null_unspecified

nonnull

returns_nonnull

, and

In Objective-C, there is an alternate spelling for the nullability qualifiers that can be used in
Objective-C methods and properties using context-sensitive, non-underscored keywords

So for method returns and parameters you can use the the double-underscored versions

/ / instead of either the single-underscored ones, or instead
of the non-underscored ones.
__nonnull __nullable __null_unspecified

The difference is that the single and double underscored ones need

to be placed after the type definition, while the non-underscored ones need to be placed before
the type definition.

Thus, the following declarations are equivalent and are correct:

- (*)result

- (* __)result

- (* _Nullable)result

nullable NSNumber
NSNumber nullable
NSNumber

For parameters:

https://stackoverflow.com/users/1214122/holex
https://stackoverflow.com/users/573186/legoless
https://stackoverflow.com/posts/33682230/timeline
http://clang.llvm.org/docs/AttributeReference.html#nullability-attributes

- ()doSomethingWithString:(*)str

- ()doSomethingWithString:(* _Nullable)str

- ()doSomethingWithString:(* __)str

void nullable NSString
void NSString
void NSString nullable

For properties:

() *status

 *__ status

 * _Nullable status

@property nullable NSNumber
@property NSNumber nullable
@property NSNumber

Things however complicate when double pointers or blocks returning something different than void

are involved, as the non-underscore ones are not allowed here:

- ()compute:(* _Nullable * _Nullable)error

- ()compute:(* __ * _Null_unspecified)error;

void NSError
void NSError nullable

// and all other combinations

Similar with methods that accept blocks as parameters, please note that the /
qualifier applies to the block, and not its return type, thus the following are equivalent:

nonnull nullable

- ()executeWithCompletion:((^)())handler
- ()executeWithCompletion:((^ _Nullable)())handler

- ()executeWithCompletion:((^ __)())handler

void nullable void
void void
void void nullable

If the block has a return value, then you're forced into one of the underscore versions:

- ()convertObject:(__ (^)(obj))handler

- ()convertObject:(__ (^ _Nullable)())handler

- ()convertObject:(_Nonnull (^ __)())handler

void nullable id nonnull nullable id
void id nonnull
void id nullable

// the method accepts a nullable block that returns a nonnull value
// there are some more combinations here, you get the idea

As conclusion, you can use either ones, as long as the compiler can determine the item to assign the
qualifier to.

Share Edit Follow edited Mar 30, 2016 at 20:07 answered Nov 12, 2015 at 21:59

Cristik
28.3k 24 83 117

3 It seems that the underscores versions can be used everywhere, so I suppose I will consistently use them,
rather than using underscored versions in some places and ones without the underscore in others. Correct?
– Kartick Vaddadi Apr 22, 2016 at 12:47

@KartickVaddadi yes, correct, you can consistently use either the single underscored, or the double
underscored versions. – Cristik Apr 22, 2016 at 12:51

 in Swift this translates to optional? non-optional or what?_Null_unspecified – mfaani Jan 30, 2018 at 20:21

1 @Honey _Null_unspecified is imported in Swift as Implicitly Unwrapped Optional – Cristik Jan 30, 2018 at
20:36

1 @Cristik aha. I guess that's its default value...because when I specify I was getting Implicitly unwrapped
optional...

didn't
– mfaani Jan 30, 2018 at 20:44

https://stackoverflow.com/a/33682230/16114650
https://stackoverflow.com/posts/33682230/edit
https://stackoverflow.com/posts/33682230/revisions
https://stackoverflow.com/users/1974224/cristik
https://stackoverflow.com/users/297868/kartick-vaddadi
https://stackoverflow.com/users/1974224/cristik
https://stackoverflow.com/users/5175709/mfaani
https://stackoverflow.com/users/1974224/cristik
https://stackoverflow.com/users/5175709/mfaani

30

From :the Swift blog

This feature was first released in Xcode 6.3 with the keywords
__nullable and __nonnull. Due

to potential conflicts with third-party libraries, we’ve changed them in Xcode 7 to the
_Nullable and _Nonnull
you see here. However, for compatibility with Xcode 6.3 we’ve

predefined macros __nullable and __nonnull to expand to the new names.

Share Edit Follow edited May 27, 2016 at 19:07

manroe
1,455 17 30

answered Nov 23, 2015 at 4:14

Ben Thomas
1,443 1 16 25

4 In a nutshell, the single and double underscored versions are identical. – Kartick Vaddadi Apr 22, 2016 at 12:44

4 Also documented in Xcode 7.0 release notes: "The double-underscored nullability qualifiers (__nullable,
__nonnull, and __null_unspecified) have been renamed to use a single underscore with a capital
letter:_Nullable, _Nonnull, and _Null_unspecified, respectively). The compiler predefines macros mapping
from the old double-unspecified names to the new names for source compatibility. (21530726)" – Cosyn Jun
24, 2016 at 3:20

30

From the :clang documentation

The nullability (type) qualifiers express whether a value of a given pointer type can be null.

Most of the time you will use and .nonnull nullable

Below are all the available specifiers. From :this article

 It bridges to a Swift implicitly-unwrapped optional.null_unspecified: This is the default.

: the value won’t be nil. It bridges to a Swift regular reference.nonnull

: the value can be nil. It bridges to a Swift optional.nullable

: the value can never be nil when read, but you can set it to nil to reset it. Applies

to properties only.

null_resettable

The notations above differ whether you use them in the of properties or functions/variables:context

The author of the article also provided a nice example:

 (, ,) *name;

// property style
@property nonatomic strong null_resettable NSString

https://stackoverflow.com/posts/33863626/timeline
https://developer.apple.com/swift/blog/?id=25
https://stackoverflow.com/a/33863626/16114650
https://stackoverflow.com/posts/33863626/edit
https://stackoverflow.com/posts/33863626/revisions
https://stackoverflow.com/users/2544629/manroe
https://stackoverflow.com/users/739146/ben-thomas
https://stackoverflow.com/users/297868/kartick-vaddadi
https://stackoverflow.com/users/1294391/cosyn
https://stackoverflow.com/posts/34664424/timeline
http://clang.llvm.org/docs/AttributeReference.html#nullability-attributes
https://swiftunboxed.com/interop/objc-nullability-annotations/
https://i.stack.imgur.com/q2waF.png

+ (< *> * _Nullable)interestingObjectsForKey:(*
_Nonnull)key;

 (, ,) *identifier1;

 (,) * _Nullable identifier2;

// pointer style
NSArray NSView NSString

// these two are equivalent!
@property nonatomic strong nullable NSString
@property nonatomic strong NSString

Share Edit Follow edited Sep 8, 2020 at 13:30 answered Jan 7, 2016 at 20:20

kgaidis
12.1k 4 69 82

13

Very handy is

NS_ASSUME_NONNULL_BEGIN

and closing with

NS_ASSUME_NONNULL_END

This will nullify the need for the code level 'nullibis' :-) as it sort of makes sense to assume that
 is non-null (or or or) unless otherwise noted.everything nonnull _nonnull __nonnull

Unfortunately there are exceptions to this as well...

s are not assumed to be (note, does not seem to work, have to use

it's ugly half brother)

typedef __nonnull nonnull

 needs an explicit nullibi but wow the sin-tax (<- guess what that

means...)

id * _Nullable id * _Nonnull

 is always assumed nullableNSError **

So with the exceptions to the exceptions and the inconsistent keywords eliciting the same
functionality, perhaps the approach is to use the ugly versions / /

 and swap when the complier complains... ? Maybe that is why they exist in the
Apple headers?

__nonnull __nullable

__null_unspecified

Interestingly enough, something put it into my code... I abhor underscores in code (old school Apple

C++ style guy) so I am absolutely sure I did not type these but they appeared (one example of
several):

 (^ DidReceiveChallengeBlock) (
 disposition,

 * __
credential);

typedef void
NSURLSessionAuthChallengeDisposition

NSURLCredential nullable

And even more interestingly, where it inserted the __nullable is wrong... (eek@!)

I really wish I could just use the non-underscore version but apparently that does not fly with the
compiler as this is flagged as an error:

https://stackoverflow.com/a/34664424/16114650
https://stackoverflow.com/posts/34664424/edit
https://stackoverflow.com/posts/34664424/revisions
https://stackoverflow.com/users/826435/kgaidis
https://stackoverflow.com/posts/33782101/timeline

 (^ DidReceiveChallengeBlock) (
 disposition,

 * credential
);

typedef void
NSURLSessionAuthChallengeDisposition

NSURLCredential nonnull

Share Edit Follow edited Jul 20, 2017 at 5:31

Hans Knöchel
11.3k 8 27 48

answered Nov 18, 2015 at 14:03

Cerniuk
12.9k 2 27 27

2 Non-underscore can only be used directly after an opening parenthesis, i.e. (nonnull ... Just to make life more
interesting, I'm sure. – Elise van Looij Feb 7, 2017 at 22:08

How do I make an id<> nonnull? I feel like this answer contains a lot of knowledge but it lacks clarity.
– fizzybear Nov 8, 2019 at 2:05

1 @fizzybear admittedly I typically take the opposite approach. Pointers are my friend and I have not had "null" /
"nil" pointer problems since the early 90's. I wish I could make the whole nullable/nilable thing just go away.
But to the point, the real answer is in the first 6 lines of the answer reply. But about your question: not
something I would do (no criticism) so I just don't know. – Cerniuk Nov 8, 2019 at 20:30

https://stackoverflow.com/a/33782101/16114650
https://stackoverflow.com/posts/33782101/edit
https://stackoverflow.com/posts/33782101/revisions
https://stackoverflow.com/users/5537752/hans-kn%c3%b6chel
https://stackoverflow.com/users/4396618/cerniuk
https://stackoverflow.com/users/126126/elise-van-looij
https://stackoverflow.com/users/2154701/fizzybear
https://stackoverflow.com/users/4396618/cerniuk

